SESQUITERPENE LACTONES FROM Ferula olgae

- O. A. Konovalova, A. I. Ban'kovskii,
- K. S. Rybalko, V. I. Sheichenko,
- P. I. Zakharov, and M. G. Pimenov

UDC 615.256.54.011.5

From the roots of <u>Ferula olgae</u> Rgl. et Schmelh. (<u>F. penninervis</u> Rgl. et Schmelh. s.l.), collected in June, 1970, by M. G. Pimenov (<u>Kirghizia</u>, valley of the R. <u>Kokomeren</u>) we have isolated two new sesquiterpene lactones which we have called olgin and olgoferin.

Olgin forms colorless needles with the composition $C_{21}H_{24}O_7$, mp 176-178°C (from ethanol) $[\alpha]^{20}+25^\circ$ (c 4.0; chloroform). IR spectrum, cm⁻¹: 1795 (γ -lactone C=O), 1745 (OCO), 1712 (C=O), 1688 (CO-C=C), 1638 and 1616 (double bonds in conjugation) (Fig. 1). UV spectrum: λ_{max} 254 nm (ϵ 12,672) (C=C-CO-C=C). The NMR spectrum is given in Fig. 2.

The dehydrogenation of the substance over Se formed chamazulene. The results obtained permitted us to assign olgin to the acylated sesquiterpene lactones.

The mass spectrum of olgin shows a molecular peak of medium intensity with m/e 388 (17.2%) and the peaks M^+ -CH₃COOH with m/e 328, 0.8%; M^+ - $\frac{H_2C}{H_3C}$ C-COOH with m/e 302, 2.16%; and M^+ -CH₃COOH-

 $_{\rm H_3C}$ c-cooH with m/e 242, 100%, which confirms the presence of the acyl radicals of methacrylic and acetic acids in olgin.

On the basis of the IR, UV, NMR, and mass spectra, structure (I) is proposed as the most probable for olgin (see Fig. 2);

Olgoferin also consists of a white crystalline substance, with the composition $C_{23}H_{26}O_7$, mp 236-239°C (from ethanol), $[\alpha]_D^{20} + 46.9$ ° (c 5.1; chloroform), mol. wt. 414 (mass spectrometrically).

IR spectrum, $\nu_{\rm max}$, cm⁻¹: 1790 (γ -lactone C=O), 1710 (CO-C=C), 1690 (CO-C=C), 1640 and 1620 (double bonds in conjugation). UV spectrum: $\lambda_{\rm max}$ 253.5 nm (ϵ 22,011). The NMR spectrum of olgoferin has the signals of the protons of five methyl groups: a singlet at 1.6 ppm (3H), singlets at 1.85 and 2.15 ppm

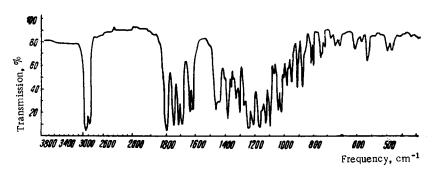


Fig. 1. IR spectrum of olgin.

All-Union Scientific-Research Institute of Medicinal Plants. Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 651-652, September-October, 1972. Original article submitted March 4, 1972.

• 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

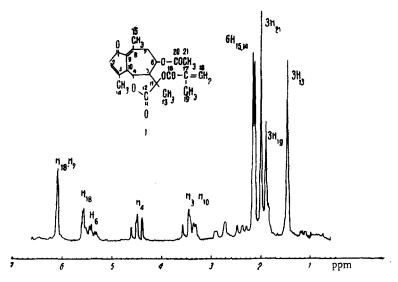


Fig. 2. NMR spectrum of olgin.

(6H each), and also a triplet at 4.63 ppm (lactone proton), a multiplet at 5.55 ppm (hemiacyl proton), and broadened signals at 5.60 (2H) and 6.12 ppm (3H) — vicinal protons in the α and β positions to a carbonyl group. The composition of the substance and its IR, UV, and NMR spectra permit structure (II) to be proposed for olgoferin: